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Background: Plantar pressure is widely used to evaluate foot complaints. However, most plantar pressure
studies focus on the symptomatic foot with foot deformities. The purposes of this study were to investigate
subjects without clear foot deformities and to identify differences in plantar pressure pattern between sub-
jects with and without forefoot pain. The second aim was to discriminate between subjects with and without
forefoot pain based on plantar pressure measurements using neural networks.
Methods: In total, 297 subjects without foot deformities of whom almost 50% had forefoot pain walked bare-
foot over a pressure plate. Foot complaints and subject characteristics were assessed with a questionnaire

and a clinical evaluation. Plantar pressure was analyzed using a recently developed method, which produced
pressure images of the time integral, peak pressure, mean pressure, time of activation and deactivation, and
total contact time per pixel. After pre-processing the pressure images with principal component analysis, a
forward selection procedure with neural networks was used to classify forefoot pain.
Findings: The pressure–time integral andmean pressure were significantly larger under the metatarsals II and
III for subjects with forefoot pain. A neural network with 14 input parameters correctly classified forefoot
pain in 70.4% of the test feet.
Interpretation: The differences in plantar pressure parameters between subjects with and without forefoot
pain were small. The reasonable performance of forefoot pain classification by neural networks suggests
that forefoot pain is related more to the distribution of the pressure under the foot than to the absolute values
of the pressure at fixed locations.
© 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Foot complaints can have a major impact on our daily lives and are
associated with an increased risk of falling and fractures, limited mo-
bility, pain in other parts of the body, and walking disorders (Gorter
et al., 2000; Leveille et al., 1998). Previous studies have reported the
high prevalence (10 and 20%) of foot disorders (Garrow et al., 2004;
Kuyvenhoven et al., 2002; Spahn et al., 2000). In a cross-sectional
survey of 7200 people aged 65 years and older (with a response
rate of 79%) conducted in The Netherlands, 20% of the respondents
were found to have nontraumatic foot complaints lasting longer than
4 weeks; the forefoot was involved in 60% of these cases, i.e. 12% of
the respondents (Gorter et al., 2000). Metatarsalgia, one of the most
common forefoot complaints, is defined as pain at the plantar aspect
of the distal heads of the metatarsal bones.

Plantar pressure measurements are widely used to evaluate foot
function and to investigate foot complaints or foot deformities. In
general, high pressure values under the foot can be seen as a good
evelopment & Education, Sint
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indicator of potential damage, especially in the symptomatic dia-
betic foot and the rheumatic foot (Frykberg et al., 1998). Many of
these diseases lead to forefoot deformities such as claw toe angle,
metatarsophalangeal joint extension, and subluxation and dislocation
of the metatarsophalangeal joints (Armstrong and Lavery, 1998; Bus
et al., 2005; Caselli and George, 2003; Mueller et al., 2003; Waldecker,
2002). Since forefoot deformities are underlying factors for an increase
in plantar pressure, elevated plantar pressure in metatarsalgia found in
the literature could be a result of foot deformities rather than the prima-
ry cause of the forefoot pain. However, many subjectswithout clear foot
deformities also suffer from metatarsalgia. To date, plantar pressure
pattern in subjects with foot complaints without clear foot deformities
has not been compared to control subjects.

Recently, new methods were developed that spatially normalize
plantar pressure images for foot size and foot progression angle
(Keijsers et al., 2009; Pataky et al., 2008). The main advantage of
these methods is that we can compare different subjects and we can
study plantar pressure at the sensor level. Therefore, the first aim of
this study is to compare plantar pressure between subjects with and
without forefoot pain without clear foot deformities, that is, without
neuromuscular disorders, diabetes or a rheumatic disease to compare
the differences. Furthermore, by normalizing the plantar pressure to a
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standard foot, pattern recognition techniques such as neural networks
can be used to discriminate between subject groups. It would be clini-
cally relevant if it were possible based on plantar pressure measure-
ment to differentiate between subjects with forefoot pain and without
forefoot pain. Hence, the second aim is to investigate whether it is
possible to discriminate between subjects with and without forefoot
pain based on plantar pressure measurements using neural networks.

2. Methods

2.1. Subjects and experimental setup

In total, 297 subjects with various foot complaints and without
foot complaints were measured in this study. The study group was
heterogeneous for age (range 16–78), occupation, foot complaint,
and wearing insoles. More women (195) compared to men (102)
were tested in this study. Demographic data (gender, age, height,
weight) were recorded. Foot complaints were assessed using a ques-
tionnaire and by physical examination performed by a physical
therapist. Subjects with neurological disorders, rheumatoid arthritis,
or other disorders were excluded as were subjects who wore insoles
for the treatment of back or knee pain. In addition, all feet with
hindfoot or forefoot deformities were excluded from the study. For
this study, each foot of each subject was classified as having forefoot
pain or not having forefoot pain. In addition, other foot complaints
such as heel pain, pain along the medial arch, and/or ankle joint pain
were also assessed. All subjects with foot complaints wore custom-
made insoles because of the foot complaints in question; these were
obtained from a podiatrist, a pedorthist, or an orthotist.

Subjects walked barefoot at their preferred walking speed with
the third step on the pressure plate (Rsscan, Olen, Belgium). Walking
speed was measured by two pairs of infrared photo cells, each located
1 m before or behind themidline of the pressure plate. Subjects walked
10 times starting, alternately, with the left or right foot. Plantar pressure
data were collected at 500 Hz using a footscan 0.5 m plate mounted on
top of the force plate (Kistler, Winterthur, Switzerland). Both systems
were synchronized with the Rsscan 3D-box. Foot contact on the plate
was calculated using Rsscan software with a threshold level of 5 N.

For a better understanding of the data analysis, a schematic repre-
sentation of the different steps in the data analysis is presented in
Fig. 1. Themain goalswere to describe the differences in plantar pressure
parameters and to classify forefoot pain.
Plantar Pressure measure
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Fig. 1. Schematic representation of the different steps in the data a
2.2. Differences in plantar pressure parameters

Plantar pressure data were analyzed at sensor level using the nor-
malization method developed by Keijsers et al. (2009). This method
first corrects for foot progression angle and, subsequently, normalizes
for foot size. As a result, the plantar pressure pattern has to be interpo-
lated between surrounding sensors. Because the interpolated pressure
is not actually measured by a sensor, the term ‘pixels’ will be used.
For each pixel, 6 parameters were calculated: 3 pressure related and
3 temporal ones. As pressure parameters the pressure–time integral
(PTI), mean pressure (MP), and peak pressure (PP) values were calcu-
lated (see Fig. 2). In addition, three timing parameters were calculated
for each pixel, also shown in Fig. 2: the difference in time between first
contact for the particular pixel and initial heel contact (referred to as
pixel-on), the difference between last contact and initial heel contact
(referred to as pixel-off); and the difference between pixel-off and
pixel-on, which indicates the contact time for each pixel (referred to
as pixel-contact). To determine which pixels to use for the analysis,
the following criterion was introduced: only those pixels for which
the average mean value for all subjects was greater than 10 kPa
were considered, resulting in 289 pixels for each parameter. The
image of the 289 pixels will be referred to as plantar pressure images
(as shown in the left panel of Fig. 2) and was determined for each of
the 6 parameters. Finally, the center of pressure (CoP) was also nor-
malized for foot progression angle and foot size. Because the duration
of stance varied among the subjects, the CoPwas normalized to stance
duration resulting in 100 frames each with a medial/lateral and an
anterior/posterior value. In addition to the pressure images and CoP,
stance duration, foot progression angle, foot width and foot length
were derived from the plantar pressure measurements.

To determine differences between subjects with forefoot pain
and subjects without forefoot pain, a t-test with corrected P-values
was used for each of the 6 plantar pressure images. The correction of
P-values was based on a procedure derived from analysis techniques
used in neuroscience for analyzing electroencephalography (EEG) sig-
nals (Maris and Oostenveld, 2007) since both data types deal with a
large amount of pixels. This technique involves a nonparametric proce-
dure for each parameter to be analyzed, based on grouping all adjacent
pixels that exhibit a similar difference in the sign of the difference (i.e.
an increase or decrease). Thus, each pixel was categorized as a “de-
creased” or “increased” pixel. Secondly, all neighboring pixels with the
same difference in sign were clustered. Subsequently, the number of
ment
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nalysis. The gray boxes indicate the 2 main goals of the study.



Fig. 2. The left panel shows an example of the mean pressure image for a right foot.
Each square box indicates a sensor/pixel. In the right panel, the pressure–time curve is
shown for a pixel in the red region of the lateral forefoot. The parameters pressure–time
integral (PTI), peak, mean, pixel-on, pixel-off, and pixel-contact are indicated.
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clusters was counted and used as the number of comparisons for the
Bonferonni correction. The number of clusters ranged from 5 to 15 clus-
ters for the 6 various plantar pressure images. The level of significance
was adjusted according to the maximum number of 15 clusters using
the Bonferonni correction for all 6 plantar pressure images (P-value for
significance=0.05/number of clusters) to Pb0.0038.

A t-test was used to indicate differences in demographic data and
single pressure parameters between subjects with forefoot pain and
subjects without forefoot pain. Gender differences between groups
were tested using a chi-square test. The level of significance was set
at P=0.05.

2.3. Classification of forefoot pain

To determine whether it is possible to discriminate between
subjects with and without forefoot pain based on plantar pressure
measurements, the choice of the algorithm to be used to classify fore-
foot pain as well as the choice of input parameters to be used by the
algorithm are of crucial importance. In our case, each foot measure-
ment consisted of 289 pixels and for each of these pixels, 6 parame-
ters were calculated; this resulted in a total of 1734 possible input
parameters. The center of pressure added another 200 input parame-
ters (100 frames each with a medial/lateral and an anterior/posterior
value). The single parameters foot progression angle, stance duration,
foot width and foot length added another 4. Hence, almost 2000 input
parameters could be used to classify forefoot pain. Since this number
was excessive in relation to the 594 (2 feet times 297 subjects) data
sample, the pressure images of the 6 parameters and center of pres-
sure were pre-processed using principal component analysis (PCA).
Principal component analysis was conducted within each parameter
separately on the 289 pixel data (pressure image). The advantage of
principal component analysis is that it reduces the number of impor-
tant variables. Principal component analysis transforms the original
variables (289 pixels) into new, uncorrelated variables called principal
components. Each principal component is a linear combination of
the original variables. The principal component's variance expresses
the amount of information contained in that principal component. The
principal components are derived in decreasing order of variance.
Thus, the first contains the most information, the last the least. Only
those principal components which explained more than 0.5% of the
variancewere used as potential input parameters tomake the classifica-
tion. In general, the first 34 principal components explained more than
0.5% of the variance (see the Results section for a detailed description).
After applying the 0.5% criterion to the principal component analysis,
the number of input parameters that were used to a make a distinction
between subjects with and without forefoot pain was reduced to
231 input parameters. In principal component analysis, the weight
(eigenvector) by which each standardized original variable should
be multiplied with to get the component score is also important.
The eigenvector indicates the relative importance of the component
score associated with that variable, in our case the pixel value.
Therefore, not only the principal component score but also the
eigenvectors of the principal component analysis will be described.
In addition to the eigenvectors, the principal component value was
used to indicate the effect of a principal component. Based on the
principal component value, feet were divided into two groups; one
group with a value smaller than the mean value of the principal
component of interest and one group with a value larger than the
mean principal component value. Subsequently, the differences in
pressure images and CoP between these groups were used to indi-
cate the effect of the principal component of interest.

The classification of forefoot pain was carried out using an artificial
neural network. The 231 principal component parameters together
with 9 subject characteristics (a total of 240) could be used as input
for the neural network. However, since it is not clear which of the
240 individual parameters will be useful to classify foot complaints,
a forward selection method in combination with an artificial neural
network as a classifier was used to choose the optimal parameters to
achieve the classification. Artificial neural networks are useful tools
for prediction when the form of the relationship is unknown and
have been for example successfully applied in mapping the insole
pressure patterns and the fore-aft component of the ground reaction
force (Savelberg and de Lange, 1999). The neural network used in
this studywas amultilayer perceptronwith an input layer, one hidden
layer, and an output layer. Each layer has several units and each unit
is connected to all units in the next layer. The number of units in
the input layer and hidden layer determine the network's ability
to generalize: that is, the network's ability to develop a proper classi-
fication for an input pattern which the network has not previously
encountered. Neural networks need a data set, which provides exam-
ples of how sets of input values are related to the output, which is
called the training-set. This data set contains output with a value of
1 or −1, forefoot pain (1) or no forefoot pain (−1). The neural net-
work was trained using backpropagation, which is a commonmethod
to teach the network, with a hyperbolic tangent sigmoid transfer
function between the units (for more details see Hertz et al., 1991).
The neural network uses data examples to adjust the weights between
units in the subsequent layers in order to minimize the error between
the desired network output and the neural network output for each
example. In the present study, 25 sets of data were constructed by
randomly selecting cases such that 80% of the cases were used for this
training. The remaining 20% formed the test set which is used after
training, to evaluate the generalization achieved by the network.

The performance of the network was evaluated using the percent-
age of feet that was correctly classified. A correct classification was
obtained if the difference between the neural network output and
the actual output was smaller than 1. In other words, a classification
was seen as correct when the neural network output was above 0
for forefoot pain and below 0 for no forefoot pain. The optimal network
was the one which gave the largest percentage of correctly classified
feet on the test-set.

3. Results

3.1. Differences in plantar pressure parameters

In total 283 feet were classified as having forefoot pain and 311
feet without forefoot pain. Some 207 feet of the 283 feet with forefoot
pain also had other foot complaints such as heel pain, ankle pain, or
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toe pain. Of the 311 feet without forefoot pain, only 58 feet had other
foot complaints. The characteristics and differences between the sub-
jects with forefoot pain and subjects without forefoot pain are shown
in Table 1. Most characteristics were not significantly different between
the groups except for the body height and foot length,whichwere signifi-
cantly smaller for subjects with forefoot pain. In addition, the percentage
of men in the forefoot pain group was significantly smaller compared to
the group without forefoot pain. An analysis of covariance (ANCOVA)
with gender as covariate revealed only significant differences in foot
length (P=0.0005) and height (P=0.007) between the groups.

Fig. 3 shows the differences in plantar pressure images between
subjects with forefoot pain and without forefoot pain for each of the
six parameters. Subjects with forefoot pain showed significantly larger
pressure–time integrals, mean pressure, and pixel-contact values
for pixels under metatarsals II–IV. In addition, the distal and medial
part of the bigger toe showed lower values for all plantar pressure
parameters. Although stance duration was not significantly different
between the two groups (see Table 1), forefoot pain subjects showed
larger pixel-contact for the metatarsal regions and larger pixel-off
values for the heel region compared to controls.

3.2. Classification of forefoot pain

As can be seen in Table 2, the number and the explained variance
of the principal components that explained more than 0.5% were
relatively identical for the various plantar pressure images. Most pa-
rameters had around 34 principal components with each individually
explaining more than 0.5% of the variance. About three-fourths
of each parameter's total variance was explained by these principal
components. For one parameter, CoP, 94.4% of the variance could be
explained with only 13 principal components, while 49 principal
components were needed to account for 70.5% of the variance for
pixel-off. In all parameters, the first principal component accounted
for roughly a third of the total variance. Again exceptions were CoP
for which the first principal component accounted for 75.0% of its
variance and pixel-off for which the first principal component only
accounted for 19.3% of its variance.

Fig. 4 shows the percentage of correctly classified feet for the
training-set and test-set as a function of the number of input parame-
ters. Initially, as the number of parameters increased, both training-set
and test-set showed an increase in percentage correctly classified for
each parameter. However, when the number of input parameters was
above 14, the percentage of correctly classified feet increased slightly
for the training-set but decreased for the test-set. The decrease in
percentage of correctly classified feet for the larger number of input
parameters is the result of data overfitting. The network with 14 input
parameters and 1 unit in the hidden layer showed the best performance
for classifying forefoot pain. That network correctly classified 76.0% of
the training-data and 70.4% of the test-data.

To gain more insight into the classification of forefoot pain by the
neural network, the relevant input parameters and their relation to
Table 1
Mean (SD) of subject characteristics and plantar pressure parameters.

Parameter Forefoot pain No forefoot pain P-value for
difference

Gender (# of male/female) 81/202 123/188 0.005
Age (years) 53 (14) 50 (16) 0.07
Weight (kg) 76 (14) 77 (15) 0.46
Height (cm) 170 (9) 173 (8) 0.003a

BMI (kg/m2) 26.0 (4.2) 25.7 (4.0) 0.30
Stance duration (s) 0.71 (0.09) 0.70 (0.10) 0.13
Foot progression angle (degrees) 12.5 (6.8) 11.6 (6.8) 0.12
Foot length (cm) 20.8 (1.25) 21.1 (1.21) 0.0002a

Foot width (cm) 9.2 (0.70) 9.3 (0.69) 0.13

a Indicates significant difference between the groups.
forefoot painwere analyzed. Fig. 5 shows the relevant input parameters
(parameter name and principal component number), how the optimal
neural network weighted them (bars) and the order in which they
were selected in the forward selection procedure (the white numbers).
Themost important parameters, i.e. those receiving the greatest weight
in the neural network were, in order of decreasing weight, the parame-
ters mean 24, Peak 4, and CoP 2. Remarkably, the first selected parame-
ter in the forward selection procedure had only a small weight in the
optimal neural network. In addition to theweights obtained by the neu-
ral network, the eigenvectors used in the principal component analysis
are also important. The eigenvectors of the parameter with the second
largest weight (Peak 4) revealed what you would expect: relatively
high pressure values under metatarsals II and III will increase the risk
of forefoot pain. The eigenvectors of the other parameters with the
largest weights were less clear but pressure values under the forefoot
contributed most to the principal component value. The two principal
CoP components derived from parameters related to the CoP had the
third and fourth largest weight in the neural network. By grouping sub-
jects with large and small values of these principal components, it was
shown that a smaller displacement of the CoP in the anterior/posterior
direction and a more lateral displacement of the CoP will increase the
risk of forefoot pain. However, it is important to note that the final
outcome of the neural network depends on all input parameters be-
cause an increased risk in one parameter can produce a decreased risk
in another parameter.

4. Discussion

The purpose of this study was to identify differences in parameters
derived from plantar pressure measurements found between subjects
with and without forefoot pain who did not suffer from systemic
disorders such as neuromuscular disorders, diabetes, and rheumatic
disease that provoke foot deformities. The second aim was to investi-
gate whether a neural network could discriminate between subjects
with and without forefoot pain. Differences in plantar pressure be-
tween subjects with and without forefoot pain were small. However,
neural networks with principal components constructed from plantar
pressure images and the center of pressure as input could distinguish
reasonably well between subjects with and without forefoot pain.

Previous studies have shown that increased plantar pressure in
the metatarsalgia patient is generally found in patients with foot defor-
mities such as claw toes or metatarsophalangeal joint subluxations or
dislocations (Bus et al., 2005; Mueller et al., 2003; Waldecker, 2002)
and that insoles reduce plantar pressure values under the metatarsals
and relieve pain in metatarsalgia patients (Kang et al., 2006; Postema
et al., 1998). As a result, metatarsalgia can be assumed to be related to
repetitive high-pressure loading under the metatarsal head that causes
pain. The significantly increased pressure–time integral and mean
pressure under metatarsal heads found in the present study confirmed
the relation between forefoot pain and increased pressure. However,
this increase was not very large. Moreover, no significant differences
under the metatarsal heads for peak pressure were found. Therefore,
from a clinical point of view, it will be hard to use pressure values to dis-
criminate between subjectswith andwithout forefoot pain. For subjects
without foot deformities, peak pressure under the metatarsals might
be less important than other factors such as fat pad thickness and pain
tolerance. However, the location of the peak pressures will differ be-
tween subjects. Due to the averaging over subjects after normalization,
these individual differences will partly disappear. On the other hand a
causal relation between peak pressure within a region and forefoot
pain in people without foot deformities has not been clearly demon-
strated in the literature thus far. For the timing parameters, however,
subjects with forefoot pain showed a significant longer loading time at
their metatarsal heads II and III as well as a delayed heel off. As stance
duration was not significantly different between the two groups, it
cannot explain the difference. In addition, all subjects' characteristics



Fig. 3. Differences in plantar pressure images between subjects with and without forefoot pain. The title of each panel indicates the plantar pressure parameter (for definitions of
the 6 parameters see Methods and Fig. 1). Pixels with black border are significantly different between subjects with forefoot pain and without forefoot pain (Pb0.0038).
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and single plantar pressure parameters were not significantly different
between the groups except for the foot length and body height.
Foot length and body height appeared to be significantly larger for
subjects without forefoot pain but the differences were very small
(see Table 1). Therefore, the relative longer loading of the metatarsal
heads and the higher pressure–time integrals under metatarsal heads
II and III indicate that forefoot pain is a result of the way the pressure
is distributed under the foot.

The importance of the pressure distribution in relation to forefoot
pain is further supported by the neural network classification and the
input parameters used in the optimal neural network. The parameters
that showed the most variation between subjects such as body weight,
midfoot loading, medial/lateral loading, and forefoot/heel loading, were
not chosen by the forward selection procedure to discriminate between
subjects with and without forefoot pain. Only the fourth principal com-
ponent for the parameter peak pressure and the third principal compo-
nent for the parameter pixel-off were used by the neural network
to classify forefoot pain. The fourth principal component of the peak
pressure grouped subjects with high pressure under the metatarsals.
Most of the principal components used by the optimal neural network
had a component number higher than ten. Hence, these principal com-
ponents explained less than 2.5% of the total variance and will only in-
dicate subtle differences. Therefore, it seems that forefoot pain results
from subtle characteristics in plantar pressure distribution rather than
the general characteristics for plantar pressure such as foot type, body
weight, and peak pressure under a particular region.
Table 2
The number of principal components per parameter that explained more than 0.5%
of the variance, the total variance explained, and the variance explained by the first
principal component.

Parameter PTI Peak Mean Pixel-on Pixel-off Pixel-contact CoP

# of PCs 33 34 34 36 49 32 13
Expl. variance 75.7 74.6 74.9 73.4 70.5 73.9 94.4
Expl. variance
first PC

30.4 30.5 29.5 31.2 19.3 33.7 75.0
The third and fourth parameters which received the largest weight
from the neural network were the second and fourth principal CoP
components. To date, differences in roll-off in relation to forefoot pain
have rarely been reported. The CoP also appeared to have an important
influence on the development of exercise related foot complaints and
lower limb injuries. For example, subjects who showed a CoP displace-
ment in medial direction after four days of extensive marching suffered
from foot complaints (Stolwijk et al., 2010). Willems et al. (2006)
supported the importance of the roll-off in relation to injuries. Although
they did not focus on forefoot pain, they found that subjects with a
lateral roll-off had an increased risk of developing exercise related
lower limb injuries. In our study, subjects with a small CoP displace-
ment in the anterior/posterior direction and a more lateral roll-off
showed an increased risk of forefoot pain. Hence, CoP is a parameter
Fig. 4. Percentage of correctly classified feet in the training-set and test-set in relation
to the number of input parameters. The optimal network was the network with 14
input parameters, which had a correct performance of 76.0% for the training-data
and 70.4% for the test-data.

image of Fig.�3
image of Fig.�4


Fig. 5. The weight of the 14 parameters in the optimal neural network, listed according
to the order resulting from the forward selection procedure (white numbers in bars).
The number after the parameter name indicates which principal component for that
parameter had been selected.
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that seems to provide essential information regarding forefoot pain and
the development of forefoot pain.

A major advantage of the present procedure in classifying
metatarsalgia is that it only requires data gathered obtained from the sub-
ject walking over a pressure plate. Firstly, principal component analysis
reduces the number of important parameters; e.g. in general almost
75% of the variance in pressure images between subjects can be described
with only 35 principal components, each accounting for at least 0.5% of
the variance for the parameter measured. Secondly, neural networks
with a forward selection procedure search for themost valuable principal
components using only the information without any prior information
and restriction. When even more data would be available, each separate
pixel could be used as an input to the neural network. Moreover,
other information such as the slope of the pressure–time curve might
be of importance in forefoot pain. The correct classification of 70%
might increase whenmore data is available and extra input parameters
can be added. Examples of such parameters derived from plantar pres-
suremeasurements aremaximal andmean loading rates, shear stresses
or time and transitional related CoP parameters. Especially, loading rate
and shear stresses are of interest since these parameters were greater in
subjects with diabetic neuropathy and a history of ulceration (Lott et al.,
2008). Although theymight have been chosenduring the forward selec-
tion procedure, the information given by these parameters are related
to the potential parameters already used in the classification model.
Moreover, plantar pressure alone cannot completely explain forefoot
pain. Other factors such as thickness of the fat pad under themetatarsals
and heel will be of importance (Abouaesha et al., 2001). In addition,
the subjective perceived pain will also be responsible if subjects suffer
from forefoot pain. Therefore, the 70% correct classification of forefoot
pain based on plantar pressure parameters is a good start and is slightly
improved by adding other plantar pressure parameters.

Differences in plantar pressure between subjects with forefoot
pain and those without forefoot pain might have been due to pathology
and/or avoidance of pain. Several studies have shown that gait kinematics
can be affected by acute or chronic pain, for example as has been shown
for the knee (Henriksen et al., 2010; Shrader et al., 2004). The effect
of pain on the foot walking pattern is less known, but Emborg et al.
(2009) showed that painful stimulations near the forefoot resulted
in avoidance of forefoot pressure. In the current cross-sectional study,
all participants had forefoot pain for a longer period and wore insoles.
Many studies have shown that insoles are effective in relieving foot
pain in diabetic, rheumatoid arthritis patients, and also for common
foot complaints (Burns et al., 2009; Novak et al., 2009; Stolwijk et al.,
2011). Furthermore, a questionnaire that had been filled in by those
subjects with forefoot pain revealed that insoles significantly reduced
forefoot pain. Therefore, only limited gait alterations can be expected
due to forefoot pain; most plantar pressure characteristics will be a re-
sult of pathology, rather than the result of pain avoidance.

Many steps have been taken for the classification of forefoot pain,
which will have their influence on the final results. Firstly, the nor-
malization method was used to standardize each plantar pressure
measurement, which only affects foot size and foot progression angle
(Keijsers et al., 2009). However, foot size and foot progression angle
were presented as potential parameters to the neural network but
were not selected during the forward selection procedure. Therefore,
foot size and foot progression angle seem to be less important in classi-
fying forefoot pain. After normalization, principal component analysis
was conducted on each of the pressure images and the CoP data. Princi-
pal component analysis does not affect the data but transforms it into
new uncorrelated variables. These principal components are difficult
to interpret because their value depends on all pixels of a pressure
image. The main reason for using PCA was that we could decrease the
number of potential parameters. The most important step in the classi-
fication of forefoot pain was the use of an artificial neural network and
a forward selection procedure. For artificial neural networks, a known
data set is required consisting of input (plantar pressure) and output
(forefoot pain). The neural network finds the optimal relation between
input and output (training the network) but this relation might be due
to chance or cofounding. However, the relative good performance on
the test set suggests that it was a causal relationship between plantar
pressure pattern and forefoot pain. Hence, it can be concluded that
the steps taken for the classification do not affect the data. In addition,
it is concluded that the relation between plantar pressure pattern and
forefoot pain seems to be causal.

The ultimate goal is to create a classification system which could
identify subjects with a high risk of developing forefoot pain. With
such a system, it would be possible to prescribe preventive measures.
To identify which subjects have a higher risk of developing forefoot
pain, a longitudinal study in which the plantar pressure measurements
are assessed prior to any sign of foot complaint is recommended.
However, such studies are difficult to perform and are time consuming.
An alternative would be to study subjects who are at a higher risk of
developing foot complaints such as thosewhose employment entails in-
tense physical labor or those who are long distance walkers.

5. Conclusions

The differences in plantar pressure parameters between subjects with
and without forefoot pain were small. Despite of the small differences,
forefoot pain was classified with a performance of 70%. Therefore, the
present study is the first step towards an expert system that can be
used to identify which subjects have a higher risk of developing forefoot
pain based on plantar pressure measurements.
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